Author:
Yohana Elimboto M.,Banda Mapundi K.
Abstract
AbstractA computational investigation of optimal control problems which are constrained by hyperbolic systems of conservation laws is presented. The general framework is to employ the adjoint-based optimization to minimize the cost functional of matching-type between the optimal and the target solution. Extension of the numerical schemes to second-order accuracy for systems for the forward and backward problem are applied. In addition a comparative study of two relaxation approaches as solvers for hyperbolic systems is undertaken. In particular optimal control of the 1-D Riemann problem of Euler equations of gas dynamics is studied. The initial values are used as control parameters. The numerical flow obtained by optimal initial conditions matches accurately with observations.
Subject
Computational Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献