Comparative study on amylosucrases derived from Deinococcus species and catalytic characterization and use of amylosucrase derived from Deinococcus wulumuqiensis

Author:

Kim Ki-Tae1,Rha Chan-Su1,Jung Young Sung1,Kim Ye-Jin1,Jung Dong-Hyun1,Seo Dong-Ho2,Park Cheon-Seok1

Affiliation:

1. Graduate School of Biotechnology and Institute of Life Science and Resources , Kyung Hee University , Yongin 17140 , Republic of Korea

2. Research Group of Healthcare, Korea Food Research Institute , Wanju 55365 , Republic of Korea

Abstract

Abstract Amylosucrase (ASase; EC 2.4.1.4), a versatile enzyme, exhibits three characteristic activities: hydrolysis, isomerization, and transglycosylation. In this study, a novel ASase derived from Deinococcus wulumuquiensis (DWAS) was identified and expressed in Escherichia coli. The optimal reaction temperature and pH for the sucrose hydrolysis activity of DWAS were determined to be 45 °C and 9.0, respectively. DWAS displays relatively high thermostability compared with other ASases, as demonstrated by half-life of 96.7 and 4.7 min at 50 °C and 55 °C, respectively. DWAS fused with 6×His was successfully purified to apparent homogeneity with a molecular mass of approximately 72 kDa by Ni-NTA affinity chromatography and confirmed by SDS-PAGE. DWAS transglycosylation activity can be used to modify isovitexin, a representative flavone C-glucoside contained in buckwheat sprouts to increase its limited bioavailability, which is due to its low absorption rate and unstable structure in the human body. Using isovitexin as a substrate, the major transglycosylation product of DWAS was found to be isovitexin monoglucoside. The comparison of transglycosylation reaction products of DWAS with those of other ASases derived from Deinococcus species revealed that the low sequence homology of loop 8 in ASases may affect the acceptor specificity of ASases and result in a distinctive acceptor specificity of DWAS.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3