Validation of a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to detect cannabinoids in whole blood and breath

Author:

Hubbard Jacqueline A.1,Smith Breland E.2,Sobolesky Philip M.3,Kim Sollip4,Hoffman Melissa A.1,Stone Judith5,Huestis Marilyn A.6,Grelotti David J.7,Grant Igor7,Marcotte Thomas D.7,Fitzgerald Robert L.1

Affiliation:

1. Department of Pathology, University of California, San Diego, CA 92121, USA

2. Insource Diagnostics, Monrovia, CA, USA

3. Department of Pathology and Laboratory Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA

4. Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Ilsan Seo-gu, Goyang, Republic of Korea

5. University of California, San Francisco Medical Center, Laboratory Medicine, Parnassus Chemistry, San Francisco, CA, USA

6. The Lambert Center for the Study of Medicinal Cannabis and Hemp, Institute for Emerging Health Professions, Thomas Jefferson University, Philadelphia, PA, USA

7. Department of Psychiatry, University of California, San Diego, CA, USA

Abstract

AbstractBackgroundThe widespread availability of cannabis raises concerns regarding its effect on driving performance and operation of complex equipment. Currently, there are no established safe driving limits regarding ∆9-tetrahydrocannabinol (THC) concentrations in blood or breath. Daily cannabis users build up a large body burden of THC with residual excretion for days or weeks after the start of abstinence. Therefore, it is critical to have a sensitive and specific analytical assay that quantifies THC, the main psychoactive component of cannabis, and multiple metabolites to improve interpretation of cannabinoids in blood; some analytes may indicate recent use.MethodsA liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to quantify THC, cannabinol (CBN), cannabidiol (CBD), 11-hydroxy-THC (11-OH-THC), (±)-11-nor-9-carboxy-Δ9-THC (THCCOOH), (+)-11-nor-Δ9-THC-9-carboxylic acid glucuronide (THCCOOH-gluc), cannabigerol (CBG), and tetrahydrocannabivarin (THCV) in whole blood (WB). WB samples were prepared by solid-phase extraction (SPE) and quantified by LC-MS/MS. A rapid and simple method involving methanol elution of THC in breath collected in SensAbues® devices was optimized.ResultsLower limits of quantification ranged from 0.5 to 2 μg/L in WB. An LLOQ of 80 pg/pad was achieved for THC concentrations in breath. Calibration curves were linear (R2>0.995) with calibrator concentrations within ±15% of their target and quality control (QC) bias and imprecision ≤15%. No major matrix effects or drug interferences were observed.ConclusionsThe methods were robust and adequately quantified cannabinoids in biological blood and breath samples. These methods will be used to identify cannabinoid concentrations in an upcoming study of the effects of cannabis on driving.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3