Ferritic Stainless Steels for High-Temperature Applications: Stabilization of the Microstructure by Solid State Precipitation of MX Carbonitrides

Author:

Nabiran N.1,Weber S.2,Theisen W.1

Affiliation:

1. 1Institut für Werkstoffe, Ruhr-Universität Bochum, 44780 Bochum, Germany

2. 2Helmholtz Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany

Abstract

AbstractFerritic heat-resistant steels are commonly used for automotive exhaust systems and have replaced cast iron, the traditional material for this application. Efforts to improve the efficiency of engines, reduce weight, and minimize toxic ingredients by increasing the gas temperature have shifted the requirement for ferritic heat-resistant steels to a higher hot strength. Methods of improving the high-temperature strength are solid-solution strengthening, precipitation hardening, and grain refinement. In this work, the influence of MX precipitates on the high-temperature mechanical properties of three different ferritic Fe-Cr stainless steels was investigated and compared to a reference material. Investigations were performed with uniaxial compression tests of samples aged isothermally at 900 °C for up to 1440 h. The most effective method of increasing the high-temperature strength is to alloy the steel with 2 mass% tungsten. Grain growth during annealing at 900 °C was decelerated by solid-state formation of MX carbonitrides. Microstructural investigations also revealed a slow coarsening rate of the MX precipitates.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3