Martensitic Induction Hardening of Nitrided Layers*

Author:

Hoja S.1,Haupt N.1,Steinbacher M.12,Fechte-Heinen R.12

Affiliation:

1. Leibniz-Institut für Werkstofforientierte Technologien – IWT , Badgasteiner Str. 3, 28359 Bremen , Germany

2. MAPEX Center for Materials and Processes, Universität Bremen , Bibliothekstraße 1, 28359 Bremen , Germany

Abstract

Abstract In this research a combination of nitriding and induction hardening is investigated, as this is expected not only to result in significant savings in process time and energy, but also to produce surface layer properties that cannot be set with one of the individual processes. The focus of the current investigations was on the dissolution of the compound layer during inductive heating and the resulting microstructure formation and the hardness profile. Furthermore, it was investigated how the absence of a compound layer affects the subsequent martensitic transformation. For this purpose, differently nitrided surface layers were martensitically hardened and the microstructure was investigated metallographically and physically. After the martensitic transformation of the nitrided layer porosity and retained austenite were observed due to the decomposition of the nitrides of the compound layer. The retained austenite could be reduced by higher temperatures during surface hardening and compound layer removal. The investigations showed, that the optimum initial condition for induction hardening is nitriding with compound layer and a mechanical removal of the latter prior to induction heat treatment.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3