On the efficiency of using correlative randomized algorithms for solving problems of gamma radiation transfer in stochastic medium

Author:

Medvedev Ilia N.12

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics , Siberian Branch of RAS , Novosibirsk 630090 , Russia

2. Novosibirsk State University, Novosibirsk 630090 , Russia

Abstract

Abstract To solve problems of radiation balance, optical sounding, and tomography, it may be necessary to take into account multiple scattering of radiation in a stochastically inhomogeneous medium. In real radiation models, for this purpose, the numerical-statistical ‘majorant cross-section method’ (MCM, delta-Woodcock tracking) is used based on the alignment of the optical density field by adding an artificial ‘delta scattering’ event. However, the computation cost of the corresponding unbiased estimate of the averaged problem solution infinitely increases as the correlation scale (correlation radius L) of standard mosaic models for a random medium density decreases. Previously, we constructed the MCM randomization providing asymptotically (for L → 0) unbiased estimates of the required functionals, in which the value of the physical attenuation coefficient is randomly chosen at the end of the particle free path l under condition l > L. Otherwise the value of the physical attenuation coefficient is the same as at the starting point of the particle (CR algorithm). In a more accurate functional correlative randomized algorithm (FCR algorithm), the coefficient remains the same with a probability determined by the correlation function. These correlative randomized algorithms were implemented for a mixture of homogeneous substance (water) and a Poisson ensemble of ‘empty’ balls. In the present paper, we construct correlative randomized algorithms for problems related to transfer through a ‘thick’ layer containing a water and a Poisson ensemble of ‘empty’ layers. A detailed comparative analysis of the results obtained by exact direct simulation (MCM) and approximate algorithms (CR, FCR) for the problems of gamma radiation transfer through a ‘thick’ water layer containing a Poisson ensemble of ‘empty’ layers or balls is presented.

Publisher

Walter de Gruyter GmbH

Subject

Modeling and Simulation,Numerical Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3