Alternative of bone china and porcelain as ceramic hand molds for rubber latex glove films formation via dipping process

Author:

Tharasana Chaturaphat1,Wongaunjai Aniruj1,Sornsanee Puwitoo1,Jitprarop Vichasharn1,Tangboriboon Nuchnapa2

Affiliation:

1. Materials Engineering Department, Faculty of Engineering , Kasetsart University , Bangkok 10900 , Thailand

2. Materials Engineering Department, Faculty of Engineering , Kasetsart University , Bangkok 10900 , Thailand ; Tel.: 66-2-797-0999-2106; Fax: 66-2-955-1811

Abstract

Abstract In general, the main compositions of porcelain and bone china composed of 54-65%wt silica (SiO2), 23-34% wt alumina (Al2O3) and 0.2-0.7%wt calcium oxide (CaO) suitable for preparation high quality ceramic products such as soft-hard porcelain products for teeth and bones, bioceramics, IC substrate and magneto-optoelectroceramics. The quality of ceramic hand mold is depended on raw material and its properties (pH, ionic strength, solid-liquid surface tension, particle size distribution, specific surface area, porosity, density, microstructure, weight ratio between solid and water, drying time, and firing temperatures). The suitable firing conditions for porcelain and bone china hand-mold preparation were firing at 1270°C for 10 h which resulted in superior working molds for making latex films from natural and synthetic rubber. The obtained fired porcelain hand molds at 1270°C for 10 h provided good chemical durability (10%NaOH, 5%HCl and 10%wtNaCl), low thermal expansion coefficient (5.8570 × 10−6 (°C−1)), good compressive (179.40 MPa) and good flexural strength (86 MPa). While thermal expansion coefficient, compressive and flexural strength of obtained fired bone china hand molds are equal to 6.9230 × 10−6 (°C−1), 128.40 and 73.70 MPa, respectively, good acid-base-salt resistance, a smooth mold surface, and easy hand mold fabrication. Both obtained porcelain and bone china hand molds are a low production cost, making them suitable for natural and synthetic rubber latex glove formation.

Publisher

Walter de Gruyter GmbH

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3