Reinforcement mechanisms and current research status of silicon carbide whisker-reinforced composites: A comprehensive review

Author:

Lai Liyan1,Bi Yuxiao1,Niu Bing1,Yu Guanliang1,Li Yigui1,Ding Guifu2,Xu Qiu3

Affiliation:

1. School of Science, Shanghai Institute of Technology , Shanghai , 201418 , China

2. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University , Shanghai , 200240 , China

3. Physical Sciences and Engineering Division, King Abdullah University of Science and Technology , Thuwal , 23955 , Saudi Arabia

Abstract

Abstract In recent decades, with the advancement of micro-electro-mechanical systems technology, traditional materials have become insufficient to meet the demands of cutting-edge technology for various material properties. Composites have attracted widespread attention as an effective and viable solution. Silicon carbide whiskers (SiCw) have emerged as excellent reinforcements due to their high thermal conductivity, low thermal expansion coefficient, high melting point, superior mechanical properties, and high chemical stability. This article provides a comprehensive review of the reinforcement mechanisms and current research state of SiCw-reinforced composites. The reinforcement mechanisms include mainly grain refinement, load transfer, and crack bridging. The composites are categorized based on the type of the matrix: ceramic-based, metal-based, and polymer-based composites. The influence and parameter performance of the reinforcement mechanism on SiCw-reinforced composite materials with different matrices vary. However, the key to improving SiCw-reinforced composites lies in understanding the interplay of properties between the matrix and the reinforcement, as well as the ordered and regular distribution and binding at the interface. Finally, the current state and limitations of SiCw-reinforced composites are summarized, and future development trends are discussed. This article represents a great contribution to the future applications of SiCw-reinforced composite materials.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3