Investigating the rheological characteristics of alkali-activated concrete using contemporary artificial intelligence approaches

Author:

Amin Muhammad Nasir1,Al-Naghi Ahmed A. Alawi2,Nassar Roz-Ud-Din3,Algassem Omar2,Khan Suleman Ayub4,Deifalla Ahmed Farouk5

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, King Faisal University , Al-Ahsa 31982 , Saudi Arabia

2. Civil Engineering Department, University of Ha’il , Ha’il 55476 , Saudi Arabia

3. Department of Civil and Infrastructure Engineering, American University of Ras Al Khaimah , Ras Al-Khaimah , United Arab Emirates

4. Department of Civil Engineering, COMSATS University Islamabad , Abbottabad 22060 , Pakistan

5. Department of Structural Engineering and Construction Management, Future University in Egypt , New Cairo City 11835 , Egypt

Abstract

Abstract Using artificial intelligence-based tools, this research aims to establish a direct correlation between the alkali-activated concrete (AAC) mix design factors and their performances. More specifically, the machine learning system was fed new property data obtained from AAC mixes used in laboratory experiments. The rheological parameters (yield stress [static/dynamic] and plastic viscosity) of AAC were predicted using the multilayer perceptron neural network (MLPNN) and bagging ensemble (BE) models. In addition, the R 2 values, k-fold analyses, statistical checks, and the dissimilarity between the experimental and predicted compressive strength were employed to assess the performance of the created models. Also, the SHapley additive exPlanation (SHAP) approach was used for examining the relevance of influencing parameters. The BE approach was found to be significantly accurate in all prediction models, with R 2 greater than 0.90, and MLPNN models were found to be moderately precise, with R 2 slightly below 0.90. However, the error assessment through statistical checks and k-fold analysis also validated the higher precision of BE models over the MLPNN models. Building models that can calculate rheological properties of AAC for different values of input parameters could save a lot of time and money compared to doing the tests in a laboratory. In order to ascertain the required amounts of raw materials of AAC, investigators, as well as businesses, may find the SHAP study helpful.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3