Vibrational Spectra of Phenylphosphonic and Phenylthiophosphonic Acid and their Complete Assignment

Author:

Förner Wolfgang1,Badawi Hassan M.1

Affiliation:

1. Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

The structures and conformational stabilities of phenylphosphonic acid and phenylthiophosphonic acid were investigated using calculations mostly at DFT/6-311G** and ab initio MP2/6-311G** level. From the calculations the molecules were predicted to exist in a conformational equilibrium consisting of two conformers which as enantiomers have the same energy, but rather unexpected dihedral angles XPCC (X being O or S) which are not equal to zero. The antisymmetric potential function for the internal rotation was determined for each one of the molecules. In these functions the conformers with zero dihedral angles appear to be stable minima (also optimization converges to this), but the vibrational frequency for the torsion turned out to be imaginary, indicating that they are maxima with respect to this symmetry coordinate. Only optimization without any restrictions and starting from a non-zero torsional angle converged to a real minimum with such a geometry (“non-planar”). For that minimum structure infrared and Raman spectra were calculated, and those for phenylphosphonic acid were compared to experimental data, showing satisfactory agreement. This gives confidence to present the spectra of phenylthiophosphonic acid as a prediction. The rather low intensity of the OH bands in the experimental infrared spectrum (as compared to normal organic acids) indicates rather weak hydrogen bonding. Normal coordinate calculations were carried out, and potential energy distributions were calculated for the molecules in the non (near)-planar conformations providing a complete assignment of the vibrational modes to atomic motions in the molecules. From the rather low rotational barriers we conclude, in agreement with results from the literature (for other P=O compounds) based on localized orbitals that conjugation effects are absent - or at least negligible - as compared to electrostatic and steric ones in determining the structures of the stable conformers in the phenyl derivatives. The P=O (and also the P=S) bond is highly polarized according to our analysis of Mulliken populations. The polarization turned out to be smaller in the thiophosphonic acid due to the smaller electronegativity of sulfur as compared to oxygen.

Publisher

Walter de Gruyter GmbH

Subject

General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3