Classification of journal bearing friction states based on acoustic emission signals

Author:

Mokhtari Noushin1,Gühmann Clemens1

Affiliation:

1. Department of Energy and Automation Technology , Chair of Electronic Measurement and Diagnostic Technology , Berlin , Germany

Abstract

Abstract For diagnosis and predictive maintenance of mechatronic systems, monitoring of bearings is essential. An important building block for this is the determination of the bearing friction condition. This paper deals with the possibility of monitoring different journal bearing friction states, such as mixed and fluid friction, and examines a new approach to distinguish between different friction intensities under several speed and load combinations based on feature extraction and feature selection methods applied on acoustic emission (AE) signals. The aim of this work is to identify separation effective features of AE signals to subsequently classify the journal bearing friction states. Furthermore, the acquired features give information about the mixed friction intensity, which is significant for remaining useful lifetime (RUL) prediction. Time domain features as well as features in the frequency domain have been investigated in this work. To increase the sensitivity of the extracted features the AE signals were transformed to the frequency-time-domain using continuous wavelet transform (CWT). Significant frequency bands are determined to separate different friction states more effective. A support vector machine (SVM) is used to classify the signals into three different friction classes. In the end the idea for an RUL prediction method by using the already determined information is given and explained.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference12 articles.

1. J. Deckers. Entwicklung einer Low-Cost Körperschallsensorik zur Überwachung des Verschleißverhaltens von wälz- oder gleitgelagerten Kreiselpumpen kleiner Leistung. PhD thesis, Gerhard-Mercator-Universität Duisburg, 2001.

2. P. Raharjo. An Investigation of Surface Vibration, Airborne Sound and Acoustic Emission Characteristics of a Journal Bearing for Early Fault Detection and Diagnosis. PhD thesis, University of Huddersfield, Mai 2013.

3. M. Fritz, A. Burger, A. Albers. Schadensfrüherkennung an geschmierten Gleitkontakten mittels Schallemissionsanalyse. Institut für Maschinen konstruktionslehre und Kraftfahrzeugbau, Universität Karlsruhe, 2001.

4. A. Albers, M. Dickerhof. Simultaneous Monitoring of Rolling-Element and Journal Bearings Using Analysis of Structure-Born Ultrasound Acoustic Emissions. International Mechanical Engineering Congress & Exposition, Vancouver, British Columbia, Canada, 1–9, 2010.

5. N. Mokhtari, M. Grzeszkowski, C. Gühmann. Vibration Signal Analysis for the Lifetime-Prediction and Failure Detection of Future Turbofan Components. Internationale Tagung Schwingungen in rotierenden Maschinen, Graz, Austria, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3