Affiliation:
1. Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche , Via Brecce Bianche, 60131 Ancona , Italy
Abstract
Abstract
In this paper we show that the real differential of any injective slice regular function is everywhere invertible. The result is a generalization of a theorem proved by G. Gentili, S. Salamon and C. Stoppato and it is obtained thanks, in particular, to some new information regarding the first coefficients of a certain polynomial expansion for slice regular functions (called spherical expansion), and to a new general result which says that the slice derivative of any injective slice regular function is different from zero. A useful tool proven in this paper is a new formula that relates slice and spherical derivatives of a slice regular function. Given a slice regular function, part of its singular set is described as the union of surfaces on which it results to be constant.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献