Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria

Author:

Aksu Demirezen Derya1ORCID,Yılmaz Şeyda12,Demirezen Yılmaz Dilek23,Yıldız Yalçın Şevki4

Affiliation:

1. Graduate School of Natural and Applied Sciences , Erciyes University , 38280 , Talas , Kayseri , Turkey

2. NanoBiotech, Erciyes Teknopark , Tekno-2, 38039 , Melikgazi , Kayseri , Turkey

3. Department of Biology, Faculty of Sciences , Erciyes University , 38280 , Talas , Kayseri , Turkey

4. Department of Environmental Engineering, Faculty of Engineering , Erciyes University , 38280 , Talas , Kayseri , Turkey

Abstract

Abstract This study focused on the colloidal stability enhancement of iron oxide nanoparticles synthesized using aqueous extract of the Ceratonia siliqua L. (carob pod) by optimizing the synthesis parameters. The synthesis parameters were determined as the concentration of iron ions, the concentration of extract, pH of extract, temperature, stirring rate, and reaction time. The significance of the studied factors in controlling the particle size distribution of nanoparticles was quantitatively evaluated via analysis of variance (ANOVA). Iron oxide nanoparticles were produced with an average zeta potential of +41 ± 0.8 mV, hydrodynamic size of 78 ± 22 nm, and a polydispersity value of 0.42 ± 0.06, respectively. As a result of the stability study by measuring the zeta potential, it was determined that the colloidal stability was maintained for 3 months. Green iron oxide nanoparticles (gIONPs) showed inhibition zones of 24.27 ± 0.12 mm and 20.83 ± 0.11 mm in 250 mg/mL concentration against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacterial strains, respectively. S. aureus was susceptible to the gIONPs according to the standard antibiotics of Cefotaxime (≥23 mm), Tetracycline (≥19 mm), Gentamicin (≥15 mm), and Cefoxitin (≥22 mm). E. coli was susceptible to the gIONPs according to the standard antibiotics of Tetracycline (≥19 mm) and Gentamicin (≥15 mm), but showed resistance to the Cefotaxime (15–22 mm) and Cefoxitin (≤21 mm) standard antibiotics. This study suggests that the green synthesized iron oxide nanoparticles could be used as an antimicrobial agent and a promising candidate for usage in sensor, biomedical, and electronics applications for being in a highly stable structure.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3