3D biomimetic scaffold’s dimensional accuracy: a crucial geometrical response for bone tissue engineering

Author:

Gade Siddhant1,Vagge Shashikant1ORCID

Affiliation:

1. Department of Metallurgy and Materials Sciences, College of Engineering , Pune , India

Abstract

Abstract Additive manufacturing has emerged as a trending methodology for producing different simple to complex geometries in minimum lead time, which in turn gives better quality attributes when compared to conventional manufacturing procedures. Fabrication of polylactic acid-based porous scaffold prototypes by 3-dimensional printing has been extensively performed successfully by many researchers. The dimensional accuracy of the 3-dimensional printed part is a very crucial aspect of bone tissue engineering. Dimensional precision of 3-dimensional biomimetic scaffolds has been a response characteristic somehow less focused on by researchers, though it is essential as it acts as a stereotype for defect recuperation while consequently developing extracellular matrix and bone regeneration. The present paper fosters re-tuning the process parameters of a fused deposition modeling based 3-dimensional printer while considering the dimensional precision as a response parameter by the Taguchi optimization technique using a full factorial design L27 orthogonal array set of design of experiments. The crystallinity of the polylactic acid filament material was assessed using differential scanning calorimetry and X-ray diffraction. The thermal breakdown of filament material was investigated utilizing a thermogravimetric analyzer. According to Taguchi’s signal-to-noise ratios, the optimum values were 0.14 mm of layer thickness, 20 mm s−1 of printing speed, and 80 % of infill percentage. In order to justify the results, response surface methodology was employed. R-square values for Taguchi and the response surface models were 88.61 % and 68.71 %, respectively.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3