Structural and conformational stability of hemocyanin from the garden snail Cornu aspersum

Author:

Dolashki Aleksandar1,Velkova Lyudmila1,Voelter Wolfgang2,Dolashka Pavlina1

Affiliation:

1. Institute of Organic Chemistry with Centre of Phytochemistry , Bulgarian Academy of Sciences , Acad. G. Bonchev str., bl.9 , Sofia 1113 , Bulgaria

2. Interfacultary Institute of Biochemistry , University of Tübingen , Hoppe-Seyler-Straße 4 , D-72076 Tübingen , Germany

Abstract

Abstract Various aspects of biomedical applications of molluscan hemocyanins, associated with their immunogenic properties and antitumor activity, promoted us to perform structural studies on these glycoproteins. The stability and reassociation behavior of native Cornu aspersum hemocyanin (CaH) are studied in the presence of different concentrations of Ca2+ and Mg2+ ions and pH values using electron microscopy. Higher concentrations of those ions led to a more rapid reassociation of CaH, resulting in stable multidecamers with different lengths. The conformational changes of native CaH are investigated within a wide pH-temperature range by UV circular dichroism. The relatively small changes of initial [θ]λ indicated that many secondary structural elements are preserved, even at high temperatures above 80°C, especially at neutral pH. The mechanism of thermal unfolding of CaH has a complicated character, and the process is irreversible. The conformational stability of the native didecameric aggregates of CaH toward various denaturants indicates that hydrophilic and polar forces stabilize the quaternary structure. For the first time, the unfolding of native CaH in water solutions in the presence of four different denaturants is investigated. The free energy of stabilization in water, ∆GD H2O, was calculated in the range of 15.48–16.95 kJ mol−1. The presented results will facilitate the further investigation of the properties and potential applications of CaH.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3