A proteomics analysis of adventitious root formation after leaf removal in lotus (Nelumbo nucifera Gaertn.)

Author:

Cheng Libao1,Liu Huiying2,Jiang Runzhi2,Li Shuyan3

Affiliation:

1. School of Horticulture and Plant Protection , Yangzhou University , Jiangsu 225009 , P.R. China

2. School of Horticulture and Plant Protection , Yangzhou University , Jiangsu , P.R. China

3. College of Guangling , Yangzhou University , Jiangsu 225009 , P.R. China

Abstract

Abstract The formation of adventitious roots (ARs) is an important process for lotus (Nelumbo nucifera), which does not have a well-formed main root. In lotus, the removal of leaves above the waterline significantly promoted AR formation, while the removal of leaves below the waterline inhibited AR formation. Proteins were identified using isobaric tags for relative and absolute quantization technique. The number of proteins decreased with increasing sequencing coverage, and most of the identified proteins had fewer than 10 peptides. In the A1/A0 and A2/A1 stages, 661 and 154 proteins showed increased abundance, respectively, and 498 and 111 proteins showed decreased abundance, respectively. In the B1/B0 and B2/B1 stages, 498 and 436 proteins showed increased abundance, respectively, and 358 and 348 proteins showed decreased abundance, respectively. Among the proteins showing large differences in abundance, 17 were identified as being related to AR formation. Proteins involved in the glycolytic pathway and the citrate cycle showed differences in abundance between the two types of leaf removal. The transcriptional levels of nine genes encoding relevant proteins were assessed by quantitative polymerase chain reaction. The results of this study illustrate the changes in metabolism after different types of leaf removal during AR formation in lotus.

Publisher

Walter de Gruyter GmbH

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3