Getchell’s method for conversion of Cartesian-geocentric to geodetic coordinates – Its properties and Newtonian alternative

Author:

Kadaj Roman1

Affiliation:

1. Rzeszów University of Technology , Department of Geodesy and Geotechnics , 12 Powstańców Warszawy St. , Rzeszów , Poland

Abstract

Abstract The paper concentrates on the iterative Getchell’s method (formulated in 1972) and its alternative Newtonian implementation for conversion of Cartesian geocentric coordinates into geodetic coordinates. The same basic equation formulated in the Getchell’s method is used in both cases. The equation has a stable form in the whole range of argument (latitude) variation π / 2 , π / 2 \langle -\pi /2,\pi /2\rangle . The original Getchell’s method (somehow “forgotten”) has a simple geometric interpretation and its applications turn out to be particularly effective. Many studies on iterative algorithms usually omit theoretical proofs of convergence replacing them with conclusions based on numerical examples. This paper presents theoretical proofs of algorithms convergence both for the Getchell’s method and the Newton procedure. The convergence parameter and numerical error of results were estimated in each case. Numerical tests were carried out for a set of points distributed on the Earth’s space, also for extreme h values. For typical practical applications of the Getchell’s method, sufficiently accurate results are obtained after 1–3 iterations, while in the Newton procedure already after one iteration, assuming the same numerical error and initial conditions. The accuracy of the geodetic coordinates determinations meets all practical requirements with some margin. For example an absolute numerical error for latitude is approx. 0.4 · 10 13 0.4\cdot {10^{-13}}  [rad] i. e. about 0.00026 mm in the length of the meridian arc. The proposed methods were compared with other methods (algorithms), including in terms of stability and non-singularity in the entire usable space of the Earth, but excluding the near geocenter, which has no practical significance. Both the modification of the Getchell method and its Newtonian alternative are very good determined in this area (in the Earth’s poles, the final solution is directly the starting value of iterative algorithms). The discussed algorithms were implemented in the form of procedures in DELPHI language.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation

Reference41 articles.

1. Bartelme, N. and Meissl, P., 1975. Ein einfaches, rasches und numerisch stabiles Verfahren zur Bestimmung des kürzesten Abstandes eines Punktes von einem sphäroidischen Rotationsellipsoid. Allgemeine Vermessungs-Nachrichten, 82, 436–439.

2. Bektas, S., 2014. Shortest distance from a point to triaxial elipsoid. International Journal of Engineering and Applied Sciences, 4(11), 22–26.

3. Benning, W., 1974. Der kürzeste Abstand eines in rechtwinkligen Koordinaten gegebenen Außenpunktes vom Ellipsoid. Allgemeine Vermessungs-Nachrichten, 81, 429–433.

4. Bjorck, A. and Dahlquist, G., 1974. Numerical Methods. Prentice-Hall.

5. Bopp, H. and Krauss, H., 1976. Der Kürzeste Abstand eines Punktes von einem Rotationsellipsoid. Allgemeine Vermessung-Nachrichten, 83, 348–351.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on general theory and methodology in geodesy in Poland in 2019–2022;Advances in Geodesy and Geoinformation;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3