Affiliation:
1. Departamento de Geometría y Topología , Universidad de Granada , E-18071 Granada , Spain
Abstract
Abstract
In the present paper we consider the Carnot–Carathéodory distance
δ
E
{\delta_{E}}
to a closed set E in the sub-Riemannian Heisenberg groups
ℍ
n
{{\mathbb{H}}^{n}}
,
n
⩾
1
{n\geqslant 1}
. The
ℍ
{{\mathbb{H}}}
-regularity of
δ
E
{\delta_{E}}
is proved under mild conditions involving a general notion of singular points. In case E is a Euclidean
C
k
{C^{k}}
submanifold,
k
⩾
2
{k\geqslant 2}
, we prove that
δ
E
{\delta_{E}}
is
C
k
{C^{k}}
out of the singular set. Explicit expressions for the volume of the tubular neighborhood when the boundary of E is of class
C
2
{C^{2}}
are obtained, out of the singular set, in terms of the horizontal principal curvatures of
∂
E
{\partial E}
and of the function
〈
N
,
T
〉
/
|
N
h
|
{\langle N,T\rangle/|N_{h}|}
and its tangent derivatives.
Subject
Applied Mathematics,Analysis
Reference44 articles.
1. C. B. Allendoerfer and A. Weil,
The Gauss-Bonnet theorem for Riemannian polyhedra,
Trans. Am. Math. Soc. 53 (1943), 101–129.
2. L. Ambrosio and S. Rigot,
Optimal mass transportation in the Heisenberg group,
J. Funct. Anal. 208 (2004), no. 2, 261–301.
3. N. Arcozzi,
Distance to curves and surfaces in the Heisenberg group,
preprint (2012), http://www.dm.unibo.it/~arcozzi/genova2012_beamer1.pdf.
4. N. Arcozzi and F. Ferrari,
Metric normal and distance function in the Heisenberg group,
Math. Z. 256 (2007), no. 3, 661–684.
5. N. Arcozzi and F. Ferrari,
The Hessian of the distance from a surface in the Heisenberg group,
Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 35–63.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献