Tubular neighborhoods in the sub-Riemannian Heisenberg groups

Author:

Ritoré Manuel1ORCID

Affiliation:

1. Departamento de Geometría y Topología , Universidad de Granada , E-18071 Granada , Spain

Abstract

Abstract In the present paper we consider the Carnot–Carathéodory distance δ E {\delta_{E}} to a closed set E in the sub-Riemannian Heisenberg groups n {{\mathbb{H}}^{n}} , n 1 {n\geqslant 1} . The {{\mathbb{H}}} -regularity of δ E {\delta_{E}} is proved under mild conditions involving a general notion of singular points. In case E is a Euclidean C k {C^{k}} submanifold, k 2 {k\geqslant 2} , we prove that δ E {\delta_{E}} is C k {C^{k}} out of the singular set. Explicit expressions for the volume of the tubular neighborhood when the boundary of E is of class C 2 {C^{2}} are obtained, out of the singular set, in terms of the horizontal principal curvatures of E {\partial E} and of the function N , T / | N h | {\langle N,T\rangle/|N_{h}|} and its tangent derivatives.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Analysis

Reference44 articles.

1. C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Am. Math. Soc. 53 (1943), 101–129.

2. L. Ambrosio and S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), no. 2, 261–301.

3. N. Arcozzi, Distance to curves and surfaces in the Heisenberg group, preprint (2012), http://www.dm.unibo.it/~arcozzi/genova2012_beamer1.pdf.

4. N. Arcozzi and F. Ferrari, Metric normal and distance function in the Heisenberg group, Math. Z. 256 (2007), no. 3, 661–684.

5. N. Arcozzi and F. Ferrari, The Hessian of the distance from a surface in the Heisenberg group, Ann. Acad. Sci. Fenn. Math. 33 (2008), no. 1, 35–63.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The bernstein problem for (X, Y)-lipschitz surfaces in three-dimensional sub-finsler heisenberg groups;Communications in Contemporary Mathematics;2023-10-13

2. Steiner and tube formulae in 3D contact sub-Riemannian geometry;Communications in Contemporary Mathematics;2023-07-26

3. Heat content asymptotics for sub-Riemannian manifolds;Journal de Mathématiques Pures et Appliquées;2021-04

4. On the Essential Self-Adjointness of Singular Sub-Laplacians;Potential Analysis;2019-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3