1. Vegetabile BG. On the distinction between conditional average treatment effects (CATE) and individual treatment effects (ITE) under ignorability assumptions. 2021. arXiv: http://arXiv.org/abs/arXiv:210804939.
2. Mueller S, Pearl J. Personalized decision making - a conceptual introduction. Los Angeles, CA, USA: UCLA; 2022. p. R–513.
3. Mueller S, Li A, Pearl J. Causes of effects: learning individual responses from population data. 2021. arXiv: http://arXiv.org/abs/arXiv:210413730.
4. Fang X. Uplift modeling for randomized experiments and observational studies. Cambridge, MA, USA: Massachusetts Institute of Technology; 2018.
5. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, et al. Hidden technical debt in machine learning systems. In: Advances in neural information processing systems. Curran Associates, inc.: Montréal, Canada; 2015. p. 2503–11.