Treatment effect optimisation in dynamic environments

Author:

Berrevoets Jeroen1,Verboven Sam2,Verbeke Wouter3

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge , Cambridge , United Kingdom

2. Data Analytics Laboratory, Solvay Business School, Vrije Universiteit Brussel , Brussels , Belgium

3. Faculty of Economics and Business, Leuven.AI, KU Leuven , Leuven , Belgium

Abstract

Abstract Applying causal methods to fields such as healthcare, marketing, and economics receives increasing interest. In particular, optimising the individual-treatment-effect – often referred to as uplift modelling – has peaked in areas such as precision medicine and targeted advertising. While existing techniques have proven useful in many settings, they suffer vividly in a dynamic environment. To address this issue, we propose a novel optimisation target that is easily incorporated in bandit algorithms. Incorporating this target creates a causal model which we name an uplifted contextual multi-armed bandit. Experiments on real and simulated data show the proposed method to effectively improve upon the state-of-the-art. All our code is made available online at https://github.com/vub-dl/u-cmab.

Publisher

Walter de Gruyter GmbH

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

Reference84 articles.

1. Vegetabile BG. On the distinction between conditional average treatment effects (CATE) and individual treatment effects (ITE) under ignorability assumptions. 2021. arXiv: http://arXiv.org/abs/arXiv:210804939.

2. Mueller S, Pearl J. Personalized decision making - a conceptual introduction. Los Angeles, CA, USA: UCLA; 2022. p. R–513.

3. Mueller S, Li A, Pearl J. Causes of effects: learning individual responses from population data. 2021. arXiv: http://arXiv.org/abs/arXiv:210413730.

4. Fang X. Uplift modeling for randomized experiments and observational studies. Cambridge, MA, USA: Massachusetts Institute of Technology; 2018.

5. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, et al. Hidden technical debt in machine learning systems. In: Advances in neural information processing systems. Curran Associates, inc.: Montréal, Canada; 2015. p. 2503–11.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3