Models for New Corrugated and Porous Solar Air Collectors under Transient Operation

Author:

Adnan Abed Qahtan,Badescu Viorel,Ciocanea Adrian,Soriga Iuliana,Bureţea Dorin

Abstract

AbstractMathematical models have been developed to evaluate the dynamic behavior of two solar air collectors: the first one is equipped with a V-porous absorber and the second one with a U-corrugated absorber. The collectors have the same geometry, cross-section surface area and are built from the same materials, the only difference between them being the absorbers. V-corrugated absorbers have been treated in literature but the V-porous absorbers modeled here have not been very often considered. The models are based on first-order differential equations which describe the heat exchange between the main components of the two types of solar air heaters. Both collectors were exposed to the sun in the same meteorological conditions, at identical tilt angle and they operated at the same air mass flow rate. The tests were carried out in the climatic conditions of Bucharest (Romania, South Eastern Europe). There is good agreement between the theoretical results and experiments. The average bias error was about 7.75 % and 10.55 % for the solar air collector with “V”-porous absorber and with “U”-corrugated absorber, respectively. The collector based on V-porous absorber has higher efficiency than the collector with U-corrugated absorber around the noon of clear days. Around sunrise and sunset, the collector with U-corrugated absorber is more effective.

Publisher

Walter de Gruyter GmbH

Subject

General Physics and Astronomy,General Chemistry

Reference56 articles.

1. Theoretical study on heat transfer characteristics and performance of the flat-plate solar air heaters;Int. Commun. Heat Mass Transfer,2003

2. Experimental analysis on the influence of internal finning on the efficiency of solar flat plate collector using Al2O3 nanoparticles;J. Non-Equilib. Thermodyn,2015

3. Collector efficiency of upward-type double-pass solar air heaters with fins attached;Int. Commun. Heat Mass Transfer,2011

4. Comparison of the effects of Al2O3 and CuO nanoparticles on the performance of a solar flat-plate collector;J. Non-Equilib. Thermodyn,2015

5. Design and optimization of a solar air heater with offset strip fin absorber plate;Appl. Energy,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3