Transparent energy-saving windows based on broadband directional thermal emission

Author:

Bae Minyeol1ORCID,Kim Do Hyeon1ORCID,Kim Sun-Kyung2ORCID,Song Young Min134ORCID

Affiliation:

1. School of Electrical Engineering and Computer Science , Gwangju Institute of Science and Technology (GIST) , Cheomdangwagi-ro 123, Buk-gu , Gwangju 61005 , Republic of Korea

2. Department of Applied Physics , Kyung Hee University , Gyeonggi-do 17104 , Yongin , Republic of Korea

3. Artificial Intelligence (AI) Graduate School , Gwangju Institute of Science and Technology (GIST) , Cheomdangwagi-ro 123, Buk-gu , Gwangju 61005 , Republic of Korea

4. Department of Semiconductor Engineering, Gwangju Institute of Science and Technology (GIST) , Cheomdangwagi-ro 123 , Buk-gu, Gwangju 61005 , Republic of Korea

Abstract

Abstract Passive radiative cooling has emerged as a sustainable energy-saving solution, characterized by its energy-free operation and absence of carbon emissions. Conventional radiative coolers are designed with a skyward orientation, allowing for efficient heat dissipation to the cold heat sink. However, this design feature presents challenges when installed on vertical surfaces, as nearby objects obstruct heat release by blocking the cooler’s skyward view. Here, we introduce a directional radiative cooling glass (DRCG) designed to facilitate efficient heat dissipation through angular selective emission. The DRCG is constructed as a multilayer structure incorporating epsilon-near-zero materials, specifically Si3N4 and Al2O3, layered on an indium-tin-oxide thermal reflector. This innovative design restricts thermal emission to specific angular ranges, known as the Berreman mode. Additionally, the transparent layers enable a visible transmittance exceeding 84 %. Theoretical simulations validate the enhanced cooling performance of the DRCG, exhibiting a temperature reduction of over 1.5 °C compared with conventional glass in hot urban environments characterized by a nearby object temperature exceeding 60 °C and a sky view factor of 0.25. Furthermore, outdoor experiments demonstrate that employing the DRCG as a window enhances space-cooling performance by ∼1.5 °C. These findings underscore the potential of transparent energy-saving windows in mitigating the urban heat island effect.

Funder

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3