Nanophotonic quantum sensing with engineered spin-optic coupling

Author:

Kim Laura12ORCID,Choi Hyeongrak13,Trusheim Matthew E.14,Wang Hanfeng13,Englund Dirk R.13

Affiliation:

1. Research Laboratory of Electronics, MIT , Cambridge , MA 02139 , USA

2. Department of Materials Science and Engineering , University of California , Los Angeles , CA 90095 , USA

3. Department of Electrical Engineering and Computer Science , MIT , Cambridge , MA 02139 , USA

4. U.S. Army Research Laboratory, Sensors and Electron Devices Directorate , Adelphi , MD 20783 , USA

Abstract

Abstract Nitrogen vacancy centers in diamond provide a spin-based qubit system with long coherence time even at room temperature, making them suitable ambient-condition quantum sensors for quantities including electromagnetic fields, temperature, and rotation. The optically addressable level structures of NV spins allow transduction of spin information onto light-field intensity. The sub-optimal readout fidelity of conventional fluorescence measurement remains a significant drawback for room-temperature ensemble sensing. Here, we discuss nanophotonic interfaces that provide opportunities to achieve near-unity readout fidelity based on IR absorption via resonantly enhanced spin-optic coupling. Spin-coupled resonant nanophotonic devices are projected to particularly benefit applications that utilize micro- to nanoscale sensing volume and to outperform present methods in their volume-normalized sensitivity.

Funder

Army Research Office

Bose Research Fellowship

National Science Foundation

Army Research Laboratory

Claude E. Shannon Fellowship

Defense Advanced Research Projects Agency

Intelligence Community Postdoctoral Research Fellowship Program

Analog Devices, Inc.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Some Other Qubits;Synthesis Lectures on Engineering, Science, and Technology;2024-07-14

2. Multichannel Control for Optimizing the Speed of Imaging in Quantum Diamond Microscope;IEEE Sensors Journal;2023-10-15

3. Rapid and high-precision displacement sensing based on the multiple mode dip areas in a SNAP microresonator;Applied Optics;2023-09-13

4. Quantum nanophotonics;Nanophotonics;2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3