Integrated multi-operand optical neurons for scalable and hardware-efficient deep learning

Author:

Feng Chenghao12ORCID,Gu Jiaqi23,Zhu Hanqing2,Ning Shupeng1,Tang Rongxing1,Hlaing May2,Midkiff Jason2,Jain Sourabh1,Pan David Z.2,Chen Ray T.124

Affiliation:

1. Microelectronics Research Center , The University of Texas at Austin , Austin , TX 78758 , USA

2. Department of Electrical and Computer Engineering , The University of Texas at Austin , Austin , TX 78705 , USA

3. School of Electrical, Computer and Energy Engineering , Arizona State University , Tempe , AZ 85287 , USA

4. Omega Optics, Inc. , 8500 Shoal Creek Blvd., Bldg. 4, Suite 200 , Austin , TX 78757 , USA

Abstract

Abstract Optical neural networks (ONNs) are promising hardware platforms for next-generation neuromorphic computing due to their high parallelism, low latency, and low energy consumption. However, previous integrated photonic tensor cores (PTCs) consume numerous single-operand optical modulators for signal and weight encoding, leading to large area costs and high propagation loss to implement large tensor operations. This work proposes a scalable and efficient optical dot-product engine based on customized multi-operand photonic devices, namely multi-operand optical neuron (MOON). We experimentally demonstrate the utility of a MOON using a multi-operand-Mach–Zehnder-interferometer (MOMZI) in image recognition tasks. Specifically, our MOMZI-based ONN achieves a measured accuracy of 85.89 % in the street view house number (SVHN) recognition dataset with 4-bit voltage control precision. Furthermore, our performance analysis reveals that a 128 × 128 MOMZI-based PTCs outperform their counterparts based on single-operand MZIs by one to two order-of-magnitudes in propagation loss, optical delay, and total device footprint, with comparable matrix expressivity.

Funder

Air Force Office of Scientific Research

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3