Topological insulator overlayer to enhance the sensitivity and detection limit of surface plasmon resonance sensor

Author:

Zhu Jiaqi1,Ke Yuxuan1,Dai Jianfeng1,You Qi1,Wu Leiming2,Li Jianqing2,Guo Jun3,Xiang Yuanjiang1ORCID,Dai Xiaoyu1

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronic Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics (IMO) , Shenzhen University , Shenzhen 518060 , China

2. Faculty of Information Technology , Macau University of Science and Technology , Macao 519020 , China

3. Jiangsu Key Laboratory of Advanced Laser Materials and Devices , School of Physics and Electronic Engineering, Jiangsu Normal University , Xuzhou 221116 , China

Abstract

Abstract Surface plasmon resonance (SPR) sensors have been applied in a wide range of applications for real-time and label-free detection. In this article, by covering the topological insulators nanosheets on the surface of the noble metal (Au), the sensitivity of the SPR sensor is greatly enhanced because of the strong interaction of light with Au–bismuth selenide (Bi2Se3) heterostructure. It is shown that the sensitivity of proposed SPR sensors depends on the concentration of Bi2Se3 solution or the thickness of the coated Bi2Se3 film. The optimised sensitivity (2929.1 nm/RIU) and figure of merit (33.45 RIU−1) have been obtained after three times drop-casting, and the enhancement sensitivity of proposed sensors is up to 51.97% compared to the traditional Au–SPR sensors. Meanwhile, the reflection spectrum is simulated by using the method of effective refractive index, and the reason for the increase of sensitivity is analysed theoretically. For researching the application of modified SPR sensor, heavy metal detection is employed to detect in the last part. Our proposed SPR sensors have potential applications in heavy metal detections and biosensing.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3