Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR

Author:

Guo Xuhan1ORCID,Ji Xingchen2,Yao Baicheng3,Tan Teng3,Chu Allen4,Westreich Ohad5,Dutt Avik6,Wong Cheewei4,Su Yikai1ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks , Shanghai Jiao Tong University , Shanghai , China

2. John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China

3. Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China) , University of Electronic Science and Technology of China , Chengdu , China

4. Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory , University of California , Los Angeles , CA , USA

5. Applied Physics Division , Soreq NRC , Yavne 81800 , Israel

6. Mechanical Engineering, and Institute for Physical Science and Technology , University of Maryland , College Park , USA

Abstract

Abstract Silicon photonics has gained great success mainly due to the promise of realizing compact devices in high volume through the low-cost foundry model. It is burgeoning from laboratory research into commercial production endeavors such as datacom and telecom. However, it is unsuitable for some emerging applications which require coverage across the visible or mid infrared (mid-IR) wavelength bands. It is desirable to introduce other wideband materials through heterogeneous integration, while keeping the integration compatible with wafer-scale fabrication processes on silicon substrates. We discuss the properties of silicon-family materials including silicon, silicon nitride, and silica, and other non-group IV materials such as metal oxide, tantalum pentoxide, lithium niobate, aluminum nitride, gallium nitride, barium titanate, piezoelectric lead zirconate titanate, and 2D materials. Typical examples of devices using these materials on silicon platform are provided. We then introduce a general fabrication method and low-loss process treatment for photonic devices on the silicon platform. From an applications viewpoint, we focus on three new areas requiring integration: sensing, optical comb generation, and quantum information processing. Finally, we conclude with perspectives on how new materials and integration methods can address previously unattainable wavelength bands while maintaining the advantages of silicon, thus showing great potential for future widespread applications.

Funder

National Science Foundation of Shanghai

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3