Intelligent on-demand design of phononic metamaterials

Author:

Jin Yabin1ORCID,He Liangshu1,Wen Zhihui1,Mortazavi Bohayra2ORCID,Guo Hongwei2,Torrent Daniel3ORCID,Djafari-Rouhani Bahram4,Rabczuk Timon5,Zhuang Xiaoying26,Li Yan1

Affiliation:

1. School of Aerospace Engineering and Applied Mechanics , Tongji University , 200092 , Shanghai , China

2. Department of Mathematics and Physics , Institute of Photonics, Leibniz University Hannover , Hannover , Germany

3. GROC-UJI, Institut de Noves Tecnologies de la Imatge , Universitat Jaume I , 12080 , Castello , Spain

4. Département de Physique , Institut d’Electronique, de Microélectonique et de Nanotechnologie, Université de Lille , UMR CNRS 8520, 59650 , Villeneuve d’Ascq , France

5. Institute of Structural Mechanics , Bauhaus-Universität Weimar , Weimar , D-99423 , Germany

6. Department of Geotechnical Engineering, College of Civil Engineering , Tongji University , 200092 , Shanghai , China

Abstract

Abstract With the growing interest in the field of artificial materials, more advanced and sophisticated functionalities are required from phononic crystals and acoustic metamaterials. This implies a high computational effort and cost, and still the efficiency of the designs may be not sufficient. With the help of third-wave artificial intelligence technologies, the design schemes of these materials are undergoing a new revolution. As an important branch of artificial intelligence, machine learning paves the way to new technological innovations by stimulating the exploration of structural design. Machine learning provides a powerful means of achieving an efficient and accurate design process by exploring nonlinear physical patterns in high-dimensional space, based on data sets of candidate structures. Many advanced machine learning algorithms, such as deep neural networks, unsupervised manifold clustering, reinforcement learning and so forth, have been widely and deeply investigated for structural design. In this review, we summarize the recent works on the combination of phononic metamaterials and machine learning. We provide an overview of machine learning on structural design. Then discuss machine learning driven on-demand design of phononic metamaterials for acoustic and elastic waves functions, topological phases and atomic-scale phonon properties. Finally, we summarize the current state of the art and provide a prospective of the future development directions.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3