Substrate-mediated hyperbolic phonon polaritons in MoO3

Author:

Schwartz Jeffrey J.12ORCID,Le Son T.13,Krylyuk Sergiy4ORCID,Richter Curt A.1ORCID,Davydov Albert V.4ORCID,Centrone Andrea1ORCID

Affiliation:

1. Physical Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA

2. Institute for Research in Electronics and Applied Physics , University of Maryland , College Park , MD 20742 , USA

3. Theiss Research , La Jolla , CA 92037 , USA

4. Material Measurement Laboratory , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA

Abstract

Abstract Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material’s volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3