Ultraviolet light scattering by a silicon Bethe hole

Author:

Lee Dukhyung1ORCID,Lee Youjin2,Kim Dai-Sik1ORCID

Affiliation:

1. Ulsan National Institute of Science and Technology , Ulsan 44919 , Republic of Korea

2. Seoul National University , Seoul 08826 , Republic of Korea

Abstract

Abstract Bethe’s theory predicts that scattering by a small hole on a thin perfect electric conductor (PEC) is presented as radiation by an in-plane magnetic dipole of the incident magnetic field direction. Even in the near-infrared range where metals are no more PEC, the magnetic dipole radiation of Bethe holes has been demonstrated. However, such Bethe holes’ nature has not been addressed yet in the ultraviolet (UV) range where conductivity of metals becomes severely deteriorated. Meanwhile, UV plasmonics has been elevating its importance in spectroscopy and photochemistry, recognizing silicon (Si) as an alternative plasmonic metal featuring the interband transition in the UV range. In this work, we expanded the Bethe’s theory’s prediction to the UV range by investigating Si Bethe holes theoretically and experimentally in terms of the scattering pattern and polarization. Simulation results showed that the scattered field distribution resembles that of an in-plane magnetic dipole, and the dipole direction at oblique incidence is roughly given as the incident magnetic field direction with a deviation angle which can be predicted from the Fresnel equations. Simulation with various diameters showed that the magnetic dipole nature maintains with a diameter less than the quarter-wavelength and multipoles becomes noticeable for diameters larger than the half-wavelength. We performed scattering polarization measurement at 69-degree incidence, which confirms the theoretical analysis. The features of Si Bethe holes demonstrated here will be useful for designing UV plasmonic metasurfaces.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3