Fourier-component engineering to control light diffraction beyond subwavelength limit

Author:

Lee Sun-Goo1ORCID,Kim Seong-Han1,Kee Chul-Sik1

Affiliation:

1. Advanced Photonics Research Institute, GIST , Gwangju 61005 , South Korea

Abstract

Abstract Resonant physical phenomena in planar photonic lattices, such as bound states in the continuum (BICs) and Fano resonances with 100% diffraction efficiency, have garnered significant scientific interest in recent years owing to their great ability to manipulate electromagnetic waves. In conventional diffraction theory, a subwavelength period is considered a prerequisite to achieving the highly efficient resonant physical phenomena. Indeed, most of the previous studies, that treat anomalous resonance effects, utilize quasiguided Bloch modes at the second stop bands open in the subwavelength region. Higher (beyond the second) stop bands open beyond the subwavelength limit have attracted little attention thus far. In principle, resonant diffraction phenomena are governed by the superposition of scattering processes, owing to higher Fourier harmonic components of periodic modulations in lattice parameters. But only some of Fourier components are dominant at band edges with Bragg conditions. Here, we present new principles of light diffraction, that enable identification of the dominant Fourier components causing multiple diffraction orders at the higher stopbands, and show that unwanted diffraction orders can be suppressed by engineering the dominant Fourier components. Based on the new diffraction principles, novel Fourier-component-engineered (FCE) metasurfaces are introduced and analyzed. It is demonstrated that these FCE metasurfaces with appropriately engineered spatial dielectric functions can exhibit BICs and highly efficient Fano resonances even beyond the subwavelength limit.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3