Nonlinear wavefront engineering with metasurface decorated quartz crystal

Author:

Mao Ningbin12,Tang Yutao1,Jin Mingke1,Zhang Guanqing1,Li Yang13,Zhang Xuecai1,Hu Zixian1,Tang Wenhao1,Chen Yu1,Liu Xuan1,Li Kingfai1,Cheah Kokwai2,Li Guixin14ORCID

Affiliation:

1. Department of Materials Science and Engineering , Southern University of Science and Technology , Shenzhen , 518055 , China

2. Department of Physics and Institute of Advanced Materials , Hong Kong Baptist University , Hong Kong , China

3. School of Optoelectronic Engineering and Instrumentation Science , Dalian University of Technology , Dalian 116024 , China

4. Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices , Southern University of Science and Technology , Shenzhen 518055 , China

Abstract

Abstract In linear optical processes, compact and effective wavefront shaping techniques have been developed with the artificially engineered materials and devices in the past decades. Recently, wavefront shaping of light at newly generated frequencies was also demonstrated using nonlinear photonic crystals and metasurfaces. However, the nonlinear wave-shaping devices with both high nonlinear optical efficiency and high wave shaping efficiency are difficult to realize. To circumvent this constraint, we propose the idea of metasurface decorated optical crystal to take the best aspects of both traditional nonlinear crystals and photonic metasurfaces. In the proof-of-concept experiment, we show that a silicon nitride metasurface decorated quartz crystal can be used for the wavefront shaping of the second harmonic waves generated in quartz. With this crystal-metasurface hybrid platform, the nonlinear vortex beam generation and nonlinear holography were successfully demonstrated. The proposed methodology may have important applications in nonlinear structured light generation, super-resolution imaging, and optical information processing, etc.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3