Recent advances in bianisotropic boundary conditions: theory, capabilities, realizations, and applications

Author:

Budhu Jordan1ORCID,Grbic Anthony1

Affiliation:

1. Electrical and Computer Engineering Department , University of Michigan , Ann Arbor , MI 48109 , USA

Abstract

Abstract In recent years, new functionality and unprecedented wavefront control has been enabled by the introduction of bianisotropic metasurfaces. A bianisotropic metasurface is characterized by an electric response, a magnetic response, and an electro-magnetic/magneto-electric response. In general, these metasurfaces consists of an array of metallic or dielectric particles located within a subwavelength thick host medium, and are approximated and modeled as infinitely-thin, idealized sheet boundaries defined along a surface. An appropriate sheet boundary condition which effectively models the tangential field discontinuity due to the array of magnetoelectric inclusions is the Generalized Sheet Transition Condition or GSTC. Several forms of the GSTC appear in literature. Here, we present each interpretation and show how they are related. Synthesis approaches unique to each form are overviewed. By utilizing the GSTC in metasurface design, new possibilities emerge which are not possible with conventional design techniques incorporating only electric or only magnetic responses. Since the metasurfaces are designed using bianisotropic boundary conditions, they must be realized using particles which contain magnetoelectric responses. This review article discusses the design of metasurfaces using the GSTC, and the bianisotropic particles used to realize GSTC’s. Further, it discusses new and recent applications that have emerged due to bianisotropy, and future prospects in metasurface design using bianisotropic boundary conditions. The intent is to provide a comprehensive overview of metasurface design involving bianisotropy and for this review article to serve as a starting point for engineers and scientist that wish to introduce bianisotropy into metasurface design.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3