Edge states in plasmonic meta-arrays

Author:

Yan Qiuchen12,Cao En2,Hu Xiaoyong134ORCID,Du Zhuochen1,Ao Yutian1,Chu Saisai1,Sun Quan3,Shi Xu5,Chan C. T.6,Gong Qihuang134,Misawa Hiroaki27

Affiliation:

1. State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-optoelectronics , Beijing Academy of Quantum Information Sciences, Peking University , Beijing 100871 , P. R. China

2. Research Institute for Electronic Science, Hokkaido University , Sapporo 001-0021 , Japan

3. Peking University Yangtze Delta Institute of Optoelectronics , Nantong , Jiangsu 226010 , P. R. China

4. Collaborative Innovation Center of Extreme Optics, Shanxi University , Taiyuan , Shanxi 030006 , P. R. China

5. Creative Research Institution, Hokkaido University , Sapporo , 001-0021 , Japan

6. Department of Physics and Institute for Advanced Study , Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China

7. Center for Emergent Functional Matter Science , National Yang Ming Chiao Tung University , Hsinchu 30010 , Taiwan

Abstract

Abstract Photonic edge states provide a novel platform to control and enhance light–matter interactions. Recently, it becomes increasing popular to generate such localized states using the bulk-edge correspondence of topological photonic crystals. While the topological approach is elegant, the design and fabrication of these complex photonic topological crystals is tedious. Here, we report a simple and effective strategy to construct and steer photonic edge state in a plasmonic meta-array, which just requires a small number of plasmonic nanoparticles to form a simple lattice. To demonstrate the idea, different lattice configurations, including square, triangular, and honeycomb lattices of meta-arrays, are fabricated and measured by using an ultrahigh spatial resolution photoemission electron microscopy. The properties of edge states depend on the geometric details such as the row and column number of the lattice, as well as the gap distance between the particles. Moreover, numerical simulations show that the excited edge states can be used for the generation of the quantum entanglement. This work not only provides a new platform for the study of nanoscale photonic devices, but also open a new way for the fundamental study of nanophotonics based on edge states.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3