Electroluminescence in plasmonic actuator based on Au/SiO2/n-Si tunnel junction

Author:

Liu Yan1ORCID,Chua Soo-Jin12,Gao Siping1,Hu Wenrui1,Guo Yongxin1

Affiliation:

1. Department of Electrical and Computer Engineering , 4 Engineering Drive 3 , National University of Singapore , Singapore 117576 , Singapore

2. LEES Program , Singapore-MIT Alliance for Research & Technology (SMART) , Singapore 138602 , Singapore

Abstract

Abstract A compact electrical source capable of generating surface plasmon polaritons would represent a crucial step for on-chip plasmonic circuitry. The device fabrication of plasmonic actuator based on Au/SiO2/n++Si tunnel junction and performance have been reported in [ACS photonics, 2021, 8, 7, 1951–1960]. This work focuses on the underlying mechanisms of electroluminescence. The n-type Si samples were doped with concentrations ranging from 1.6 × 1015 cm−3 to 1.0 × 1020 cm−3. A low voltage of 1.4 V for intense light emission was achieved at the highest concentration. The electrical/spectral characteristics and energy band diagrams calculation show two distinct behaviors indicating two distinct mechanisms of light emission are at work in the heavily doped versus the lightly doped Si. In the heavily doped case, the light output is correlated to tunneling current and the subsequent conversion of surface plasmons to photons, while that for the lightly doped case is due to indirect band-to-band recombination in silicon. The results are validated by numerical simulation which indicates that the heavy doping of the n++-Si is necessary to achieve surface plasmon generation via electron tunneling due to the presence of band tail states and their effect on lowering the barrier height.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3