An approach for the efficient immobilization of 79Se using Fe-OOH modified GMZ bentonite

Author:

Yang Junqiang1,Shi Keliang12,Sun Xuejie1,Gao Xiaoqing13,Zhang Peng1,Niu Zhiwei14,Wu Wangsuo12

Affiliation:

1. Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 Lanzhou , P.R. China

2. Key Laboratory of Special Function Materials and Structure Design , Ministry of Education, Lanzhou University , 730000 Lanzhou , P.R. China , Tel.: +86 931 8913278, Fax: +86 931 8913551

3. Environmental Monitor Center of Gansu Province , 730000 Lanzhou , P.R. China

4. Key Laboratory of Special Function Materials and Structure Design , Ministry of Education, Lanzhou University , 730000 Lanzhou , P.R. China

Abstract

Abstract Because of high mobility, the immobilization of long-lived fission product 79Se (often existed as 79Se(IV) and 79Se(VI) anions) is a critical consideration in the repository of high-level radioactive waste. In this work, a Fe-OOH modified bentonite (Fe-OOH-bent) was synthesized as a potential filling material in the repository site for effective adsorption and present the migration of different species of 79Se. The adsorbent was characterized using FT-IR, XRD, XFS, zeta potential and BET to clarify its physical properties, compositions and structures. A good thermal and radiation stabilities of Fe-OOH-bent was confirmed by its stable uptake ratio for Se(IV) and Se(VI) compared to original samples. The batch experimental results show that Se(IV) and Se(VI) can be efficiently removed from aqueous by Fe-OOH-bent within 60 min with maximum adsorption capacities of 68.45 mg/g for Se(IV) and 40.47 mg/g for Se(VI) in the optimal conditions, indicating its high potential application in consideration of its simple synthesis process, low cost and high adsorption capacity in view of immobilization of 79Se. The surface species and variation of oxide state of Fe as well as Se(IV) and Se(VI) onto Fe-OOH-bent were investigated by XPS analysis. The values of relative area of Se(IV)–O and Se(VI)–O in XPS spectra followed the same tendency as their adsorption ratio with the variation of system pH, suggesting that the formation of complexes between selenium species and Fe-OOH-bent surface.

Funder

Science Challenging Program

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3