Luminescence spectroscopic investigations of europium complexes formed in the kaolinite-humic acid/citric acid systems

Author:

Verma Parveen Kumar1,Mohapatra Prasanta Kumar1

Affiliation:

1. Radiochemistry Division, Bhabha Atomic Research Centre , Trombay , Mumbai , 400085 , India

Abstract

Abstract In the present study, the nature of Eu(III) complexes (Eu(III) was used as a surrogate for Am(III)) formed in kaolinite–humic acid (HA)/citric acid (CA) system was investigated by luminescence spectroscopy. In addition to the ternary system (kaolinite + Eu + L(CA/HA)), the binary system (Eu-L) was also looked at for a better understanding of the complexes formed at the kaolinite surface. The lifetime and emission spectra of Eu-L complexes on the kaolinite surface differ considerably as compared to the same in the aqueous phase. The Eu-HA aqueous complexation shows differences in the excitation spectra with similar decay lifetimes with increasing aqueous HA concentrations. The ligand-to-metal charger transfer (LMCT) in the Eu-HA excitation spectra suggests the complexation of Eu(III) with HA at pH ∼ 4. Although the mode of Eu(III) binding to the kaolinite surface in the presence of CA/HA was the same i.e. metal-bridged ternary complex formation, the local surroundings around the sorbed Eu(III) differ in the two cases. The loading of HA in the Eu-HA-kaolinite system does not have a large effect on the local structure around the sorbed Eu(III) ion, but enhances the percentage of Eu(III) uptake onto the kaolinite surface. The number of H2O molecules in the primary hydration sphere of sorbed Eu(III) differs in the Eu-HA-kaolinite and Eu-CA-kaolinite systems. In addition, Eu(III) assisted precipitation of HA was also seen using a radiometric method.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3