Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness

Author:

Mohammed Ahmed1,Rădulescu Vicenţiu D.2ORCID,Vitolo Antonio3

Affiliation:

1. Department of Mathematical Sciences , Ball State University , Muncie , IN 47306 , USA

2. Institute of Mathematics, Physics and Mechanics , 1000 Ljubljana , Slovenia ; and Faculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland; and Institute of Mathematics “Simion Stoilow” of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

3. Department of Civil Engineering , Universitá di Salerno , 84084 Fisciano (Salerno) , Italy

Abstract

Abstract The primary objective of the paper is to study the existence, asymptotic boundary estimates and uniqueness of large solutions to fully nonlinear equations H ( x , u , D u , D 2 u ) = f ( u ) + h ( x ) {H(x,u,Du,D^{2}u)=f(u)+h(x)} in bounded C 2 {C^{2}} domains Ω n {\Omega\subseteq\mathbb{R}^{n}} . Here H is a fully nonlinear uniformly elliptic differential operator, f is a non-decreasing function that satisfies appropriate growth conditions at infinity, and h is a continuous function on Ω that could be unbounded either from above or from below. The results contained herein provide substantial generalizations and improvements of results known in the literature.

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference47 articles.

1. N. Abatangelo, Very large solutions for the fractional Laplacian: Towards a fractional Keller–Osserman condition, Adv. Nonlinear Anal. 6 (2017), no. 4, 383–405.

2. S. Alarcón and A. Quaas, Large viscosity solutions for some fully nonlinear equations, NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 4, 1453–1472.

3. M. E. Amendola, L. Rossi and A. Vitolo, Harnack inequalities and ABP estimates for nonlinear second-order elliptic equations in unbounded domains, Abstr. Appl. Anal. 2008 (2008), Article ID 178534.

4. A. Ancona, On strong barriers and an inequality of Hardy for domains in 𝐑 n {\mathbf{R}}^{n} , J. Lond. Math. Soc. (2) 34 (1986), no. 2, 274–290.

5. C. Bandle and M. Marcus, “Large” solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math. 58 (1992), 9–24.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3