Berestycki-Lions conditions on ground state solutions for a Nonlinear Schrödinger equation with variable potentials

Author:

Chen Sitong1,Tang Xianhua1

Affiliation:

1. School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, P.R.China

Abstract

Abstract This paper is dedicated to studying the nonlinear Schrödinger equations of the form $$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} -\triangle u+V(x)u=f(u), & x\in \mathbb{R}^N; \\ u\in H^1(\mathbb{R}^N), \end{array} \right. \end{array}$$ where V ∈ 𝓒1(ℝN, [0, ∞)) satisfies some weak assumptions, and f ∈ 𝓒(ℝ, ℝ) satisfies the general Berestycki-Lions assumptions. By introducing some new tricks, we prove that the above problem admits a ground state solution of Pohožaev type and a least energy solution. These results generalize and improve some ones in [L. Jeanjean, K. Tanka, Indiana Univ. Math. J. 54 (2005), 443-464], [L. Jeanjean, K. Tanka, Proc. Amer. Math. Soc. 131 (2003) 2399-2408], [H. Berestycki, P.L. Lions, Arch. Rational Mech. Anal. 82 (1983) 313-345] and some other related literature. In particular, our assumptions are “almost” necessary when V(x) ≡ V > 0, moreover, our approach could be useful for the study of other problems where radial symmetry of bounded sequence either fails or is not readily available, or where the ground state solutions of the problem at infinity are not sign definite.

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Reference40 articles.

1. Existence of a positive solution for nonlinear Schrödinger equations with general nonlinearity;Adv. Nonlinear Anal.,2014

2. On a class of nonlinear Schrödinger equations;Z. Angew. Math. Phys.,1992

3. A positive solution for a nonlinear Schrödinger equation on ℝN;Indiana Univ. Math. J.,2005

4. Existence of ground state solutions of Nehari-Pankov type to Schrödinger systems;Sci. China Math,2019

5. Zero mass case for a fractional Berestycki-Lions-type problem;Adv. Nonlinear Anal.,2018

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3