Affiliation:
1. Department of Mathematics, Jiangxi Normal University , Nanchang , Jiangxi 330022 , PR China
Abstract
Abstract
Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator
ℒ
V
≔
−
Δ
+
V
{{\mathcal{ {\mathcal L} }}}_{V}:= -\Delta +V
, where
V
(
x
)
=
∑
i
=
1
m
μ
i
∣
x
−
A
i
∣
2
V\left(x)={\sum }_{i=1}^{m}\frac{{\mu }_{i}}{{| x-{A}_{i}| }^{2}}
, with
μ
i
≥
−
(
N
−
2
)
2
4
{\mu }_{i}\ge -\frac{{\left(N-2)}^{2}}{4}
being the Hardy-Leray potential containing the polars’ set
A
m
=
{
A
i
:
i
=
1
,
…
,
m
}
{{\mathcal{A}}}_{m}=\left\{{A}_{i}:i=1,\ldots ,m\right\}
in
R
N
{{\mathbb{R}}}^{N}
(
N
≥
2
N\ge 2
). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients
{
μ
i
}
i
=
1
m
{\left\{{\mu }_{i}\right\}}_{i=1}^{m}
and the locations of polars
{
A
i
}
\left\{{A}_{i}\right\}
play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let
Ω
\Omega
be a bounded domain containing
A
m
{{\mathcal{A}}}_{m}
. First, we obtain increasing Dirichlet eigenvalues:
ℒ
V
u
=
λ
u
in
Ω
,
u
=
0
on
∂
Ω
,
{{\mathcal{ {\mathcal L} }}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1.0em}{\rm{on}}\hspace{0.33em}\partial \Omega ,
and the positivity of the principle eigenvalue depends on the strength
μ
i
{\mu }_{i}
and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem
(
E
)
ℒ
V
u
=
ν
in
Ω
,
u
=
0
on
∂
Ω
,
\left(E)\hspace{1.0em}\hspace{1.0em}{{\mathcal{ {\mathcal L} }}}_{V}u=\nu \hspace{1em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1em}{\rm{on}}\hspace{0.33em}\partial \Omega ,
when
ν
\nu
belongs to
L
p
(
Ω
)
{L}^{p}\left(\Omega )
, with
p
>
2
N
N
+
2
p\gt \frac{2N}{N+2}
in the variational framework, and we obtain a global weighted
L
∞
{L}^{\infty }
estimate when
p
>
N
2
p\gt \frac{N}{2}
. When the principle eigenvalue is positive and
ν
\nu
is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem
(
E
)
\left(E)
. Moreover, via this weighted distributional framework, we can obtain a sharp assumption of
ν
∈
C
γ
(
Ω
¯
\
A
m
)
\nu \in {{\mathcal{C}}}^{\gamma }\left(\bar{\Omega }\setminus {{\mathcal{A}}}_{m})
for the existence of isolated singular solutions for problem
(
E
)
\left(E)
.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献