Dirichlet problems involving the Hardy-Leray operators with multiple polars

Author:

Chen Huyuan1,Chen Xiaowei1

Affiliation:

1. Department of Mathematics, Jiangxi Normal University , Nanchang , Jiangxi 330022 , PR China

Abstract

Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator V Δ + V {{\mathcal{ {\mathcal L} }}}_{V}:= -\Delta +V , where V ( x ) = i = 1 m μ i x A i 2 V\left(x)={\sum }_{i=1}^{m}\frac{{\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ( N 2 ) 2 4 {\mu }_{i}\ge -\frac{{\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , , m } {{\mathcal{A}}}_{m}=\left\{{A}_{i}:i=1,\ldots ,m\right\} in R N {{\mathbb{R}}}^{N} ( N 2 N\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\left\{{\mu }_{i}\right\}}_{i=1}^{m} and the locations of polars { A i } \left\{{A}_{i}\right\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \Omega be a bounded domain containing A m {{\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: V u = λ u in Ω , u = 0 on Ω , {{\mathcal{ {\mathcal L} }}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1.0em}{\rm{on}}\hspace{0.33em}\partial \Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) V u = ν in Ω , u = 0 on Ω , \left(E)\hspace{1.0em}\hspace{1.0em}{{\mathcal{ {\mathcal L} }}}_{V}u=\nu \hspace{1em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1em}{\rm{on}}\hspace{0.33em}\partial \Omega , when ν \nu belongs to L p ( Ω ) {L}^{p}\left(\Omega ) , with p > 2 N N + 2 p\gt \frac{2N}{N+2} in the variational framework, and we obtain a global weighted L {L}^{\infty } estimate when p > N 2 p\gt \frac{N}{2} . When the principle eigenvalue is positive and ν \nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν C γ ( Ω ¯ \ A m ) \nu \in {{\mathcal{C}}}^{\gamma }\left(\bar{\Omega }\setminus {{\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \left(E) .

Publisher

Walter de Gruyter GmbH

Subject

Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3