Affiliation:
1. Institute of Mathematics Department of Integrative Biology BOKU Wien 1180 Vienna Austria
Abstract
Abstract
Following Friedlander & Iwaniec [FRIEDLANDER, J. B.—IWANIEC, H.: Summation formulae for coefficients of L-functions, Canad. J. Math. 57 (2005), 494—505], the objective of this note are the coefficients a
n
of the Dirichlet series for L(s, χ
1)L(s, χ
2)L(s, χ
3) where χ
1, χ
2, χ
3 are primitive Dirichlet characters with modules D
1, D
2, D
3. For
∑
n
≤
x
a
n
$\sum\limits_{n\le x}a_n$
, with x large, sharp asymptotics are established which are uniform in D
1, D
2, D
3. To this end, the modern method for the estimation of exponential sums, due to [HUXLEY, M. N.: Area, Lattice Points, and Exponential Sums, LMS Monographs, New Ser. 13, University Press, Oxford, 1996] and others, is applied with gain.
Reference21 articles.
1. Atkinson, F. V.: A divisor problem Quart. J. Math. 12 (1941), 193-200.
2. Berndt, B.: On the average order of a class of arithmetical functions I, J. Number Theory 3 (1971), 184-203.
3. Berndt, B.: On the average order of a class of arithmetical, functions II, J. Number Theory 3 (1971), 288-305.
4. Bombieri, E.—Iwaniec, H.: On the order of ζ(12 $ {1 \over 2} $ + it), Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser., 13 (1986), 449-472.
5. Chandrasekharan, K.—Narasimhan, R.: Hecke’s functional equation and the average order of arithmetical functions, Acta Arith. 6 (1961), 487-503.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献