Integrated Devices for Photoelectrochemical Water Splitting Using Adapted Silicon Based Multi-Junction Solar Cells Protected by ALD TiO2 Coatings

Author:

Cottre Thorsten1,Welter Katharina2,Ronge Emanuel3,Smirnov Vladimir2,Finger Friedhelm2,Jooss Christian3,Kaiser Bernhard1,Jaegermann Wolfram1

Affiliation:

1. Institute of Material Science, Technische Universität Darmstadt , D-64287 Darmstadt , Germany

2. IEK5-Photovoltaics, Forschungszentrum Jülich , D-52425 Jülich , Germany

3. Institute for Material Physics, Universität Göttingen , Friedrich-Hund-Platz 1, D-37077 Göttingen , Germany

Abstract

Abstract In this study, we present different silicon based integrated devices for photoelectrochemical water splitting, which provide enough photovoltage to drive the reaction without an external bias. Thin films of titanium dioxide, prepared by atomic layer deposition (ALD), are applied as a surface passivation and corrosion protection. The interfaces between the multi-junction cells and the protective coating were optimized individually by etching techniques and finding optimal parameters for the ALD process. The energy band alignment of the systems was studied by X-ray photoelectron spectroscopy (XPS). Electrochemically deposited platinum particles were used to reduce the HER overpotential. The prepared systems were tested in a three-electrode arrangement under AM 1.5 illumination in 0.1 M KOH. In final tests the efficiency and stability of the prepared devices were tested in a two-electrode arrangement in dependence of the pH value with a ruthenium-iridium oxide counter electrode. For the tandem-junction device solar to hydrogen efficiencies (STH) up to 1.8% were reached, and the triple-junction device showed a maximum efficiency of 4.4%.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3