Structural Determination of a DNA Oligomer for a Molecular Spin Qubit Lloyd Model of Quantum Computers

Author:

Yamamoto Satoru1,Nakazawa Shigeaki12,Sugisaki Kenji12,Maekawa Kensuke3,Sato Kazunobu14,Toyota Kazuo12,Shiomi Daisuke12,Takui Takeji14

Affiliation:

1. Department of Chemistry and Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

2. FIRST Project on “Quantum Information Processing”, The Cabinet Office, JSPS, Tokyo 101-8430, Japan

3. Department of Regulatory Bioorganic Chemistry, The Institute of Scientific Industrial Research (ISIR), Osaka University, Ibaraki 567-0047, Japan

4. FIRST Project on “Quantum Information Processing”, The Cabinet Office, JSPS, Tokyo 101-8430, Japan , Phone: +81-6605-2605, Fax: +81-6605-2522

Abstract

Abstract The global molecular and local spin-site structures of a DNA duplex 22-oligomer with site-directed four spin-labeling were simulated by molecular mechanics (MM) calculations combined with Q-band pulsed electron-electron double resonance (PELDOR) spectroscopy. This molecular-spin bearing DNA oligomer is designed to give a complex testing ground for the structural determination of molecular spins incorporated in the DNA duplex, which serves as a platform for 1D periodic arrays of two or three non-equivalent electron spin qubit systems, (AB)n or (ABC)n, respectively, enabling to execute quantum computing or quantum information processing (Lloyd model of electron spin versions): A, B and C designate non-equivalent addressable spin qubits for quantum operations. The non-equivalence originates in difference in the electronic g-tensor. It is not feasible to determine the optimal structures for such DNA oligomers having molecular flexibility only by the MM calculations because there are many local minima in energy for their possible molecular structures. The spin-distance information derived from the PELDOR spectroscopy helps determine the optimal structures out of the possible ones acquired by the MM calculations. Based on the MM searched structures, we suggest the optimal structures for semi-macromolecules having site-directed multi-spin qubits. We emphasize that for our four molecular spins embedded in the DNA oligomer the Fajer’s error analysis in PELDOR-based distance measurements was of essential importance.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3