Catalytic Behavior of Molybdenum Sulfide for the Hydrogen Evolution Reaction as a Function of Crystallinity and Particle Size Using Carbon Multiwall Nanotubes as Substrates

Author:

Stellmach Diana1,Xi Fanxing1,Bloeck Ulrike2,Bogdanoff Peter1,Fiechter Sebastian1

Affiliation:

1. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute Solar Fuels , 14109 Berlin , Germany

2. Department of Structure and Dynamics of Energy Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany

Abstract

Abstract Molybdenum sulfide is of interest as a noble metal-free catalyst for the hydrogen evolution reaction (HER). In crystallized form, it shows a typical stacking of planar S–Mo–S layers whereas the catalytically active centers are situated on the edges of these entities characterized by non-saturated bonds of the molybdenum atoms. In this study, 2H-MoS2 is investigated as HER catalyst as a function of particle size using powder electrodes of different grain sizes and morphology. HER was also determined as a function of growth defects (bending of layers) and as a function of active sites employing MoS2 nanoparticles (NP). To study the influence of the substrate on the perfection of the transition metal disulfide, MoS2 nanosheets were deposited on multi-walled carbon nanotubes (MWCNTs) of different diameters. Highest activity was found for MoS2 nanosheets deposited on MWCNTs with a diameter smaller than 8 nm. At diameters larger than 10 nm, a wrapping of the nanotubes by partially bended stacks of S–Mo–S layers occurs, while at diameters smaller than 10 nm, individual MoS2 nanosheets of 3–5 S–Mo–S stacks of 3–4 nm in height and 10–20 nm in lateral extension surround the carbon nanotubes in form of hexagonal cylinders. The ratio of catalytically active non-van-der-Waals and hexagonal basal planes was determined electrochemically by electro-oxidation and correlated with HER activity.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3