Development of an automated 3D metallography system and some first application examples in microstructural analysis

Author:

Lemiasheuski A.1,Bajer E.1,Oder G.1,Göbel A.1,Hesse R.1,Pfennig A.2,Bettge D.1

Affiliation:

1. BAM Bundesanstalt für Materialforschung und prüfung , Berlin Germany

2. HTW Berlin, Hochschule für Technik und Wirtschaft Berlin Germany

Abstract

Abstract Traditional metallography relies on the imaging of individual section planes. However, conclusions as to spatial shapes and microstructural arrangements can only be drawn to a limited extent. The idea to reconstruct three-dimensional microstructures from metallographic serial sections is therefore obvious and not at all new. However, the manual process of preparing a great number of individual sections and assembling them into image stacks is time-consuming and laborious and therefore constitutes an obstacle to frequent use. This is why the Federal Institute for Materials Research and Testing, or BAM for short (Bundesanstalt für Materialforschung und -prüfung), is developing a robot-assisted 3D metallography system performing the tasks of preparation and image acquisition on a metallographic section fully automatically and repeatedly. Preparation includes grinding, polishing and optional etching of the section surface. Image acquisition is performed using a light optical microscope with autofocus at several magnification levels. The obtained image stack is then pre-processed, segmented and converted to a 3D model resembling a microtomographic image, but with a higher lateral resolution at large volumes. As opposed to tomographic techniques, it is possible to perform traditional chemical etching for contrasting. The integration of a scanning electron microscope is in the planning stages. Studies conducted so far have demonstrated the possibility of visualizing hot gas corrosion layers, gray cast irons and ceramic-based microelectronic structures (vias).

Publisher

Walter de Gruyter GmbH

Subject

Metals and Alloys,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3