Sustainability consolidation via employment of biomimetic ecomaterials with an accentuated photo-catalytic potential: emerging progressions

Author:

Jaffri Shaan Bibi1,Ahmad Khuram Shahzad1,Thebo Khalid Hussain23,Rehman Faisal4

Affiliation:

1. Department of Environmental Sciences, Fatima Jinnah Women University , Rawalpindi , Pakistan

2. University of Chinese Academy of Sciences (UCAS) , Beijing , People’s Republic of China

3. Dr. M. Kazi Institute of Chemistry, University of Sindh , Jamshoro , Pakistan

4. Department of Electrical Engineering , The Sukkur IBA University , Sukkur , Sindh , Pakistan

Abstract

Abstract Environmental pollution produced due to direct and untreated release of toxic organic pollutants such as dyes from the textile industries is not only effect the human life but also contaminates the ecosystem through different transferal modes. Green nanomaterials synthesized by using biological reducing agents offer sustainable, economically viable, facile, rapid and eco-friendly approach with photocatalytic degradation efficiencies >90% for organic dyes over the other traditional technologies. Current review has for the first time comprehensively abridged the suitability of green nanoparticles over chemogenic nanoparticles, the remediative role of these biogenic nanoparticles with major emphasis on the recent progressions in the photocatalysis of different toxic dyes and pollutants. Unlike physicochemically processed nanoparticles, biogenic nanoparticles has profound contribution to the sustainable development goals due to their cleaner and economical synthesis in addition to their detoxifying role. Meticulous review of the publications are strongly suggestive of the adoptability of biogenic nanoparticles at an implementation scale for their auspicious remediative role in addition to facile fabrication, natural reducing agents based synthetic mode, toxicity free and sustainable nature. However, the studies are also indicative of the need for utilization of biogenic synthesis at practical scale to derive maximum sustainability and ecological benefits.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3