The Effectiveness of High Quality Supplementary Cementitious Materials for Mitigating ASR Expansion in Concrete with High Alkali Content

Author:

Prasetia I.

Abstract

Alkali silica reaction (ASR) is influenced by external factors such as the surrounding environment of high alkalinity. Countries with cold climate have a high probability to be exposed to high concentrations of NaCl solution by the deicing salt. This condition will lead to serious ASR problems in concrete, if the aggregates contain reactive silica. The main research work in this paper is to investigate the effect of 15% replacement ratio of high quality fine fly ash (FA15%) and 42% replacement ratio of blast furnace slag (BFS42%) on the ASR mitigation in concrete with different alkali amount inside the pore solution. The experiments were conducted according to the accelerated mortar bars experiment following the JIS A1146 mortar bar test method. In addition, post-analysis such as observation of ASR gel formation by the Uranyl Acetate Fluorescence Method and observation of thin sections using a Polarizing Microscope were also conducted. The mortar bar tests show a very good mitigation effect of supplementary cementitious materials (SCMs). The results show that only small ASR expansions, which can be categorized as “innocuous”, occurred for specimens with 1.2% Na2Oeq using FA15% and BFS42%. However, larger alkali amount inside the system will require more SCMs amount.

Publisher

Engineering, Technology & Applied Science Research

Reference15 articles.

1. T. Habuchi, N. Miyasaka, H. Tsuji, K. Torii, “Evaluation of combined deterioration of concrete structures in marine environment due to alkali-silica reaction and seawater attack”, 4th International Conference on Concrete under Severe Conditions, Vol. 2, pp. 2026-2033, 2004

2. P. R. Vassie, “A secondary of ASR on bridges-corrosion of reinforcement steel”, 2nd International Conference on Bridge Management, pp. 18-21, 1993

3. K. Torii, “The Characteristic Feature of Fracture of Steel Reinforcement in ASR-Deteriorated Concrete Structures”, Corrosion Engineering, Vol. 59, No. 4, pp. 59-65, 2010

4. Japan Society of Materials Science, “Report on the development of pre-stressed concrete structures using high durability powder blast furnace slag”, 1998 (in Japanese).

5. K. Torii, “High durability of concrete through the use of fly ash- Approach and information dissemination to ASR problem of Hokuriku region”, Civil Engineering in Electric Power, No. 357, pp. 11-15, 2012 (in Japanese).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3