A Fast Digital Phase Frequency Detector with Preset Word Frequency Searching in ADPLL for a UHF RFID Reader

Author:

Ishak S. N.,Sampe J.,Nayan N. A.,Yusoff Z.

Abstract

An All-Digital Phase-Locked Loop (ADPLL) is an architecture that is widely employed in the communication system due to the advancement of the Complementary Metal-Oxide-Semiconductor (CMOS) technology process. A 2.4GHz Radio Frequency Identification (RFID) system needs a frequency synthesizer in the local oscillator architecture of the transceiver to generate a stable frequency tuning range Therefore, in this paper, a Digital Phase-Frequency Detector (DPFD) is designed to achieve the phase and frequency acquisition in the ADPLL system. The proposed DPFD is divided into two main parts, the first is the Phase Detector (PD) and the second is the Frequency Detector (FD). The PD has managed to detect the presence of the phase difference by recognizing two different input signals. The FD, on the other hand, is capable to detect the higher frequency by identifying the output signals from the PD in digital formation. In addition, a control unit module is developed to control and adjust the Preset Word (PW) for the system by using a binary search scheme. Comparison results show that the final value of the PW from the simulation is the same as from the manual calculation (theoretical values). The digital PFD and the PW control modules are designed and simulated by using Verilog HDL code. These two designed modules will be integrated into the targeted ADPLL to achieve fast locking performance and ultra-low power for Ultra-High Frequency (UHF) RFID applications.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review: ultra-low power all-digital phase-locked loop RF transceivers for biomedical monitoring applications;Analog Integrated Circuits and Signal Processing;2024-05-13

2. Performance Evaluation of Optimum Number of Stages for ADPLL Ring Oscillator;2023 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2023-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3