The Performance of Spectral Clustering Algorithms on Water Distribution Networks: Further Evidence

Author:

Belloum F.,Houichi L.,Kherouf M.

Abstract

The aim of the current paper is to revisit the performance of spectral clustering algorithms for water distribution networks. In the literature, there have been attempts to introduce improved algorithms based on graph theory. We focus on a class of these algorithms that applies the concepts of the spectral clustering approach. We assess the performance of spectral clustering algorithms on a wider range of water network types (i.e. large, medium, and small sized networks) using a wider range of clustering methods (both partitioning and hierarchical) and performance indicators. Our findings suggest that partitioning methods, such as k-means are not consistently efficient in all types of networks. Nonetheless, the Partitioning Around Medoids (PAM) algorithm shows a relatively good performance according to modularity, while the internal indices of k-means and hierarchical clustering algorithms are more efficient. Stability indices show that PAM and CLARA algorithms are more efficient.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Reference36 articles.

1. K. B. Adedeji, Y. Hamam, B. T. Abe, and A. M. Abu-Mahfouz, "Pressure Management Strategies for Water Loss Reduction in Large-Scale Water Piping Networks: A Review," in Advances in Hydroinformatics, P. Gourbesville, J. Cunge, and G. Caignaert, Eds. New York, NY, USA: Springer, 2018, pp. 465–480.

2. S. Ates, "Hydraulic modelling of closed pipes in loop equations of water distribution networks," Applied Mathematical Modelling, vol. 40, no. 2, pp. 966–983, Jan. 2016.

3. A. Di Nardo and M. Di Natale, "A Design Support Methodology for District Metering of Water Supply Networks," in 12th Annual Conference on Water Distribution Systems Analysis, Arizona, USA, Sep. 2010, pp. 870–887.

4. H. E. Mutikanga, S. K. Sharma, and K. Vairavamoorthy, "Methods and Tools for Managing Losses in Water Distribution Systems," Journal of Water Resources Planning and Management, vol. 139, no. 2, pp. 166–174, Mar. 2013.

5. A. Di Nardo, M. di Natale, G. Santonastaso, and S. Venticinque, "Graph partitioning for automatic sectorization of a water distribution system," in Proceedings of 11th International Conference on Computing and Control for Water Industry (CCWI). Urban Water Management: Challenges and Opportunities, Jan. 2011, pp. 841–846.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Form of Hazen-Williams Equation for Pressurized Flow;Engineering, Technology & Applied Science Research;2024-06-01

2. Assessing the Level of Maturity of Operational Excellence in Morocco: A Comparative Study between SMEs and LEs;Engineering, Technology & Applied Science Research;2024-02-08

3. A Cluster-based Undersampling Technique for Multiclass Skewed Datasets;Engineering, Technology & Applied Science Research;2023-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3