Development of a Hybrid Solar and Waste Heat Thermal Energy Harvesting System

Author:

Hanani Mohamed Nadzirin,Sampe Jahariah,Jaffar Jasrina,Mohd Yunus Noor Hidayah

Abstract

This research aims to develop a Hybrid Solar and Waste Heat Thermal Energy Harvesting System that integrates Thermoelectric Generator (TEG) with a solar PV system. The main focus is given to the development of the hybrid solar and waste heat released from the solar panel by using the TEG system. This hybrid system consists of photovoltaic (PV) cells to absorb the solar energy and the TEG attached to the back of the panel to absorb heat waste and convert it into usable electricity. The PV cell and the TEG are integrated with each other in order to obtain maximum energy and increased system efficiency. The experimental results show that the maximum output voltage produced from the solar PV is 20.37V and the maximum output current generated is 203.72mA. The maximum output voltage obtained from the TEG is 18.92V and the maximum current produced is 189.265mA. This experimental result shows that the maximum voltage and current produced from solar and waste thermal heat from PV panels can be used to charge and to power up portable electronic devices. More efficiency is accomplished by combining the TEG to absorb waste heat loss from the PV cell, thus improving the performance of the PV panel system.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3