Author:
Hassooni A. N.,Al Zaidee S. R.
Abstract
The Concrete Filled Steel Tube Column (CFST) is classified as a composite structural element. This type of column was adopted as the main loaded member in many buildings due to its excellent mechanical properties. CFST columns have high strength and ductility behavior, and they can sustain heavy loads with high performance. These led to their adoption in many countries. In the current study, the behavior and strength of CFST columns under the effect of axial compression load with parameters such as the diameter to thickness ratio and the height to diameter ratio were investigated. Strength carrying capacity and axial and lateral deformations with axial and lateral strains were explored. The test results showed that smaller heights within the same material gave higher strength capacity. The stiffness of the CFST is more than concrete and hollow steel section specimens' due to its capability of high strength capacity with low displacement. Also, the composite action of CFST gave more stiffness.
Publisher
Engineering, Technology & Applied Science Research
Reference19 articles.
1. C. Wu, J. Li, and Y. Su, "5 - Ultra-high performance concrete-filled steel tubular columns," in Development of Ultra-High Performance Concrete Against Blasts, C. Wu, J. Li, and Y. Su, Eds. Woodhead Publishing, 2018, pp. 283–395.
2. ACI Committee 440, ACI PRC-440.2-17: Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. ACI, 2017.
3. M. H. Lai and J. C. M. Ho, "Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load," Engineering Structures, vol. 67, pp. 123–141, May 2014.
4. L.-H. Han, W. Li, and R. Bjorhovde, "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members," Journal of Constructional Steel Research, vol. 100, pp. 211–228, Sep. 2014.
5. P. Li, T. Zhang, and C. Wang, "Behavior of Concrete-Filled Steel Tube Columns Subjected to Axial Compression," Advances in Materials Science and Engineering, vol. 2018, Aug. 2018, Art. no. e4059675.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献