Supporting Scholarly Search by Query Expansion and Citation Analysis

Author:

Khalid S.,Wu S.

Abstract

Published scholarly articles have increased exponentially in recent years. This growth has brought challenges for academic researchers in locating the most relevant papers in their fields of interest. The reasons for this vary. There is the fundamental problem of synonymy and polysemy, the query terms might be too short, thus making it difficult to distinguish between papers. Also, a new researcher has limited knowledge and often is not sure about what she is looking for until the results are displayed. These issues obstruct scholarly retrieval systems in locating highly relevant publications for a given search query. Researchers seek to tackle these issues. However, the user's intent cannot be addressed entirely by introducing a direct information retrieval technique. In this paper, a novel approach is proposed, which combines query expansion and citation analysis for supporting the scholarly search. It is a two-stage academic search process. Upon receiving the initial search query, in the first stage, the retrieval system provides a ranked list of results. In the second stage, the highest-scoring Term Frequency–Inverse Document Frequency (TF-IDF) terms are obtained from a few top-ranked papers for query expansion behind the scene. In both stages, citation analysis is used in further refining the quality of the academic search. The originality of the approach lies in the combined exploitation of both query expansion by pseudo relevance feedback and citation networks analysis that may bring the most relevant papers to the top of the search results list. The approach is evaluated on the ACL dataset. The experimental results reveal that the technique is effective and robust for locating relevant papers regarding normalized Discounted Cumulative Gain (nDCG), precision, and recall.

Publisher

Engineering, Technology & Applied Science Research

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyper-tuned Swarm Intelligence Machine Learning-based Sentiment Analysis of Social Media;Engineering, Technology & Applied Science Research;2024-08-02

2. Utilizing Ant Colony Optimization for Result Merging in Federated Search;Engineering, Technology & Applied Science Research;2024-08-02

3. Document Co-citation Analysis using Concept Lattice;Engineering, Technology & Applied Science Research;2023-10-13

4. Summarization of scholarly articles using BERT and BiGRU: Deep learning-based extractive approach;Journal of King Saud University - Computer and Information Sciences;2023-10

5. Understanding the impact of query expansion on federated search;Multimedia Tools and Applications;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3